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Abstract-Wireless communication is one of the important Ivitspects of life. The growth of wireless
communication technologies has been producing tloeneous demand for high-speed, efficient, relialdee &
data communication. For better transmission, regalasingle — carrier waves by multi — carrier waudence, we
proposed a novel technique which efficiently suited PAR reduction in OFDM. This paper discussedulthe
PAR reduction aiming to achieve higher throughigher data rate and better performance. The useraiM
causes a high peak to- average (power) ratio (PAR)ch necessitate expensive and power- inefficiatio-
frequency (RF) components at the base statiorhisnpaper, we present a novel data transmissioensehwhich
exploits the massive tone reservation availablkige-scale MU-MIMO-OFDM systems to achieve low PAR
previous algorithm, we are applying FITRA for PMRere to reduce computational complexity of FITRAg w
proposed a novel scheme based on sparse for PMP. dé&eloped a corresponding algorithm is
fast iterative truncation algorithm (FITRA) with @ge representation and show numerical resultetoodstrate
tremendous PAR-reduction capability. Experimenteduits show that our method will achieve bettewltes
compared to state-of-art criteria like FITRA inrtex of PAR and computational complexity.

Index Terms - Convex optimization, MU MIMO-OFDM, Peak to avgegpower) ratio reduction, Precoding and
Sparse.

1. INTRODUCTION

After more than thirty years of research anolagh  sych channels would be desirable. whereas heavier
carried out in the field of communication OFDM hasjispensation could be afforded at the BS. Orthogona
been widely implemented in high speed digitafrequency-division multiplexing (OFDM) [4] is an

communication [1]. OFDM has its major benefits Ofefficient and well-established way of commerce with
higher data rates and better performance. The highequency selective channels.

data rates are achieved by use of multiple caraers In addition to simplify the equalization at the
performance improved by use of guard interval whickeceiver, OFDM also facilitates per-tone influerare
leads to removal of Inter Symbol Interference (IZl)  pit allocation, scheduling in the frequency domaing
OFDM has several features which makes it morgand shaping. However, OFDM is known to suffer from
advantageous for high speed data transmission.eTheshigh PAR [5], which necessitate the use of linREr
features include High Spectral competence, Robsstne:omponents (e.g., power amplifiers) to avoid out-of
to Channel Fading, and Immunity to Impulsepand radiation and signal distortions. Unfortunatel
Interference and Easy Equalization. linear RF components are, in general, more costty a
In spite of these benefits there are some blaaks |ess power efficient than their non-linear countets
such as PAPR, Offset frequency and Inter Carrigfhich would eventually result in exorbitant costs f
Interference (ICI) between sub-carriers [3]. Pidti |arge-scale BS implementations having hundreds of
wireless channels typically exhibit frequency sBl&c antennas. Therefore, it is of paramount consequemce
fading and a low-PAR precoding solution suitable fo  reduce the PAR of OFDM-based large-scale MU-
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MIMO s to facilitate parallel low-cost and low-powe truncation algorithm (FITRA), which is able to firide

BS implementations. solution to PMP efficiently for the (typically laedy
dimensions arising in large-scale MU-MIMO-OFDM
1.1. Orthogonality s.For reducing the complexity of the fast iterative

truncation algorithm we are applying continuation
null of the other carrier at 90 degrees. Sincectireiers hardware.
are all sine and cosine waves. Finally, we can wbse .
the orthogonality principle irFig 2.2. Generally, we 2.1. Notations
know that two periodic signals are orthogonal when

their integral product over one period is eqaatéro. Notation lowercase bold-face writing for colum
Hence, OFDM system is bandwidth efficient wher¥ectors and upper-case bold-face letters designate
compared to FDM. matrix. The MxM distinctiveness matrix is denotegd b

Im. The MxN all zeros matrixes by Omxn. and Fm
refers to the MxM discrete Fourier transform(DFT)
matrix.

Teire A B L ) E

2.2. Outline of the paper

The remainder of the paper is organized as
introduces the model and summarizes important PAR-
reduction concepts. The proposed system transmissio
scheme is detailed and the fast iterative trunnatio
algorithm (FITRA) is developed.

3. BLOCK DIAGRAM OF MU MIMO-OFDM
Figl.sub-carrier allocation by using orthogonality DOWNLINK

Take an action to combat the challenging litga The input data symbols are supplied into a channel
requirements of OFDM, a much of PAR-reductiorencoder that data are mapped onto QPSK/QAM
schemes have been proposed for point-to-point eingiconstellation. The data symbols are converted from
antenna and MIMO wireless systems, e.g., . For Mserial to parallel and using Inverse Discrete Fauri
MIMO systems, however, a straight forward adaptatioTransform (IDFT) to achieve the time domain OFDM
of these schemes is non-trivial, mainly because MBymbols[7]. Time domain signal is cyclically exteod
systems require the removal of MUI using a Preagpdinto prevent Inter Symbol Interference (ISI) from the
methods. PAR-reduction schemes suitable for the MJermer OFDM symbol using cyclic prefix (CP).

MISO and MU-MIMO downlink transmission, and rely ~ Input data symbols are supplied into a channel

on Tomlinson-Hiroshima precoding. Both schemesgncoder that data are mapped onto BPSK/QPSK/QAM

however, require specialized signal processinghi t constellation.

(mobile) terminals (e.g., modulo reduction), which In belowfig first the data symbols are converted

prevents or reduced their use in conventional MIMOfrom serial to parallel and using Inverse Fast kour

OFDM systems, such as IEEE 802.11n or 3GPP LTE.Transform (IFFT) to achieve the time domain OFDM
symbols.

2. LITERATURE SURVEY Time domain signal is cyclically extended teyent
Inter Symbol Interference (ISI) .

In this paper, we develop a novel system lrasd
scheme for large-scale MU-MIMO-OFDM wireless|
system, which only affects the signal processinthat v

BS[6] while leaving the meting out required at eac w e 7‘v

terminal undamaged. The key idea of the proposg ccloall |3 H "

scheme is to exploit the excess of degrees-of-freed | ., 555 . ', -

(DoF) offered by equip the BS with a large nhumbgr d B8k %g g ~ J
S | IFT — P/S —»

antennas and tmintly perform MU precoding, OFDM
modulation, and PAR reduction, referred to as PNMP
the remnants of the paper. We develop and examine a Fig.2. MU MIMO_OFDM Transmitter
novel optimization algorithm, referred to as fdetative -
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In receiver side we have to remove cyclic préfi (3,2) -3
receiver side and then the data symbols are ctad/er (1,2) 1
from series to parallel. Finally ,by using Fast Feu (2,3) 2
Transform we are converting from time domain to Name  Size Bytes Class
frequency domain.
M 3x3 72 double array
S 3x3 64 sparse array
v Innumerical analysis, a sparse matrix is also
z sip FFT a matrix .Inthis matrix most of the elements are zero.
5g — —™ —0 Suppose, if most of the elements are nonzero co-
efficient, then the matrix is considered as dergee
Vv Yw selection (fraction) of zero elements (non-zero
g s/p FET elements) in a matrix is called thg sparsi.ty (dsi
3‘ § — —> —0 In the case of a sparse matrix, consideral@mony

requirement reductions can be realized by storinlg o
the non-zero entries in the matrix. Finally, it degds on

. ) ) the number and distribution of the non-zero entires
Fig.3. Large scale multi-user MIMO-OFDM downlink {he matrix. Different data structures can be used a

receiver block diagram yield huge savings in memory storage when compared
. . L . to the basic approach.
The advantage of using QAM is that it is ahlely — gparse matrix-vector multiplication is an imtpat

order form of modulation and as a result it is alile 510 ation kernel that arises in scientific sintigas,
carry more bits of information per symbol. By S&é#®8 4t mining, image and signal processing, and other

a higher order format of QAM, the data rate ofrkli jications also. It performs poorly on modern
can be increased.QAM is a means of modulating boff}ocessors, because of its high ratio of memory
streams(imaginary& real) onto one RF carriers[8]MQA qhqrations to arithmetic operations and the ategirar

achieves a greater distance between adjacent Fjomtsmemory access model patterns. However Optimizing
the I-Q plane by distributing the points more eyenl yhis gigorithm is difficult, because the performanc

Modulating the symbols onto subcarriers can be dong.,ands on the nonzero structure of the matrix @b w
very efficiently using the FFT algorithm OFDM s o5 'the characteristics of a given memory system.
efficiently implemented using IFFT/FFT large amount 14 sparse matrix is a matrix that allows acé

of work has been devoted to reducing the computatiGechnique to take advantage of the large number of
time of a FFT.IFFT on the transmitter side FFTtoa "background" (commonly  zero) elemens.

receiver side By using Fourier transform we camgea requirement or aim is to find exactly how many zero

the domain are present in the matrix or a percentage of zemresent
. totally in the matrix. We used the "Eq.(1)" like
3.1. Sparse Matrix

: o x = sum((y == 0)); 1
The large matrices that arise in real-worldbems

in science, engineering , and mathematics tendeto b \,nich is supposed to give the no of zeros mrese
mostly zero, or sparse. Sparse matrix algorith@sni 1o column of the matrix.
the inter section of graph theory and numericatdin
algebra. EDU>>M
If a matrix M is stored in ordinary (denseyrhat,
then the command S = sparse(M) creates a copyeof ffy- 11

matrix stored in sparse format. 001
111
For example: >>M=[010;102;0-30]
EDU >> numel(M)-nnz(sparse(M 2
Ve o0 1 o (M)-nnz(sparse(M)) @)
1 .0 2 This "Eq.(2)" also give the number of zerossent
_O 30 in the total matrix. Here, we are subtracting tba mero
>> S = sparse(M) coefficients from the total coefficients present thre
matrix.

s= 21 1
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3. 2. Normalization
2
n
Mathematically a norm is a total length aresof all S= Z:(yi - f (xi ))
vectors in a vector space or matrices. For sintplic =) (6)
finally we can say that the higher the norm is, liftgger

the (value in) matrix size or vector size. Norm may By using this "Eq.(6)" we can find out the acgs of

come in many forms and also many names, includinge itference between the target values and the
these popular name: Euclidean distance, Mean-stjuargstimated values.

Error, etc.

. . Depending upon the application and requirerment
Most of the time the norm appears in a equdtle may have to choose L1- norm or L2 or etc.
this:  ||x || |

where x can be a vector or a imatr L-Infinity norm, the definition for « -norm is
For example, a Eucl3|dean norm of a vector is ||X|| - w/z‘ X
" ' )
a=2 then
1 By using this "Eq.(7)" we can find out the rifinity
norm .Where more number of co- efficient present i
||a”2 =32 + 22 +12 the matrix there we have to use this norm. Thismaea

the matrix size is more so the complexity also mawe
this type of applications we have to choose L Hiityi
norm for calculations.

=3.742 ©)

which is the size of vector a.

The above "EQ.(3)" shows how to compute consider the vector x, let's say % is the highest
Euclidean norm or formally called an 12-norm. Folijna entry in the vector x, by the property of the ity
the In-norm of x is defined ’

itself, we can say that
" Xy > X th
I, = 3/ Tx] “ e
An n-th-root of a summation of all elementshie n- ||X|| = w/z X® = o{,/XTo - |X|
th power is what we call a norm shown in "Eq. (4)". o i ] ] (8)

While practicing machine learning, we may hav ) J
come upon a choice of deciding whether to use the LNow we can simply above "Eq.(8)" say that tive-
norm or the L2-norm or In norm for regularization. norm Is

L1-norm is also known as least absolute deviat ||x” = ma)(M)
(LAD), least absolute errors (LAE).This norm is °
basically minimizing the sum of the absolute ) ] ) ] ]
differences (S) between the target value (Yi) ahd t that this "Eq.(9)" is the maximum entries magnitede
estimated values (f(xi)):

©)

that vector. That surely demystified the meaninémf
norm[14].

n
S= Z|yi a f(xi)| The feature selectionis frequently mentioned aa
= ®) useful property of the L1-norm, which the L2-norm
) ] ) ] does not. This is actually a result of the L1-nowhijch
By using this "Eq.(5)" we can find out thefdience tengs to produces sparse coefficients .For Supplose
between the target values and estimated values. model have 100 coefficients but only 10 of themenhav
) ~_non-zero coefficients in that, this is effectivedgying
L2-norm is also known as least squares. TOIEWS  hat “the other 90 predictors are useless in ptegjthe
basically minimizing the sum of the square of th target values”. L2-norm produces non-sparse

differences (S) between the target value (Yi) ahd t coefficients, so does not have this property.
estimated values (f(xi):
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Sparsity refers to that only a few entriesaimatrix truncation algorithm (FITRA) to appreciably redube
(or vector) is non-zero remaining are zero coedfits. PAR at the same time  perfectly avoiding MU
Then, L1-norm has the property of producing maninterference.
coefficients with zero values or very small valweésh
few non-zero coefficients. 4.1. Proposed techniques

4. FITRA ALGORITHM | ,-minimization has been one of the hot topics & th

signal processing and optimization communitieshia t

Tablel. Fast iterative truncation algorithm(FITRA) last five years or so. In compressive sensing (B&ry

, it has been shown to be an efficient approach to
recover the sparsest solutions to certain
underdetermined systems of linear equations.

2for k=1,............ Kdo Gradient Projection Methods: We first discuss
gradient projection (GP) methods that seek sparse

. — L<w—n 1.\ representation x along certain gradient directishich
4a ~ arg[‘nln Aa +EZi:1 V‘4i _0'] induces much faster convergence speed. The approach
¢

reformulates the |‘1 min as a quadratic programming

Linitiate, X, « Oy, Y, <« Xo.t; « LL < 2

5.%, « trunc, (W) (QP) problem compared to the LP implementation in
1 5 PDI_PA. We start with the “1-min proplem (P1;2):isit

61, - > +41+ 4t equivalent to the so-called LASSO objective funatio

t, -1 5. MEASURE THE PERFORMANCE
1Y = X+ 1(Xk - Xk—l)

k we are compare the PAR characteristicsfiiergint
8.end for types of precoding methods ,we use the complementar
9.return x cumulative distribution function defined as

CCDF(PAR)=p{PAR >PAR} (10)

Large-scale (or massive) multiple-input mubipl Compressed Sensing is the name assigned talehe i
output (MIMO) technology is a challenging wirelessof encoding a large sparse signal usimglatively small
communication technology. It means that by using thnumber of linear measurements, and minimizing it}e )

technology we get higher throughput and improveehorm (or its variants)in order to decode the si@na
quality-of-service in  multi-user (MU) wireless CS channel estimation method concerns the sparse

communication systems. In particular, set up thgebaleconstruction problem of estimating an unknown

station (BS) with a large number of antennas, whilgParse channel vector from an observed vector of
. ) measurements based on the linear model, namely the
serving a few users concurrently and in the sa

) ] Mfieasurement by omitting the superscript for bré@ty
frequency band, has the potential to increasepbetsal
efficiency of existing wireless systems. R= (/h +7 (11)

In addition, large-scale MIMO is able to redube

operational power consumption at the transmitter.,(i \yhere = m N my ¢ F €C x is a known measurement

the BS). Practical consciousness of large-scale ®GlIM . - .
) 9 ol m]atrIX, Z' is the measurement noise vector, anthoéla
however, need novel means to reduce the costs 0O

hundreds of antennas at the BS. In particularutieeof VECOr N is L sparse,where L is the number of rpatti
orthogonal frequency division multiplexing (OFDMpw and is much

need of PAR reduction techniques. This simulator

provides an environment to assess the performafce o N

the large-scale MU-MIMO-OFDM downlink and ~ M=clL D]Og(fj 12)
provides narrative algorithms to reduce the PARgSI

different precoding methods. In particular, the

simulator contains the PMP algorithm which relies o

convexl_, -norm minimization via the fast iterative
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wherec > 0 is a constant. Secondly, the measureme6tSIMULATION RESULTS
matrixy should satisfy the RIP, namely, for bisparse

vectorh. we have The PAR reduction capabilities and error rate

performance for different precoding methods.

QM'] 2
1-0, s””h—”;suq (13)
I B T
—B—5
WhereO< J, <1is the isometry constarit| is the . —
2
12-norm.
¥=aF (14)

Arnplitude

For the concerned in another word, the RIP requhie

rows {¢)mj} of m ¢ cannot sparsely represent the

the RIP of the measurement matrixwy ¢ F(4) .As we A ‘ . ; : i
mentioned abovemp is the m-by-N matrix which ‘ * ' Sam;@?ndex . = 0

consists ofm unit vectorsi e, and it is the unit matrix
IN when the number of pilahis N. F is the N-by-N Fig4. Time Representation for different Pre-coding
DFT matrix, which is also the unitary matrix. Since

| =F"F , every row ofl, e, can be expressed as Fig 4 shows the time representation fdfecknt
where is the conjugate operatignj F s the |, i)- th  precoding methods.PMP results in time domain $igna
element of DFT matri(5) , andj F is thej-th column having a significantly smaller PAR than that of M,
vector off. and LS+clip .

5.1. Peak to average power ratio(PAPR)

One of the main problem emerging in OFDM this : T
so-called Peak to Average Power Ratio (PAPR Bheseppend s e e kf%ﬂhp'
problem. The input symbol stream of the IDFT shoulg ' — PP

possess a uniform power spectrum, but the outptiteof
IDFT may result in a non-uniform or spiky power
spectrum. Most of transmission energy would bg
allocated for a few instead of the majority subieas:
This problem can be quantified as the PAPR measiure,
causes many problems in the OFDM at the transmitti
end.

Spectrum

5.2. Calculation of PAPR

i 1 ; i i
The peak to average power ratio for a signal t) 0 & 100 150 0 0 300

defined as in "Eq.(15)". OFDM Tonslndex
papr = ma){x(t)x D(t)] (15) fig 5.Frequency Representation for different Rodiag
E X(t)x D(t) methods

where *corresponds to the conjugate operator.

Expressing in decibels Fig 5 shows the frequency representation fo

different  precoding  methods. In  frequency
representation the different precoding methodsh sisc
papry; = 10|0910(papr) (16)  LS,MF,LS+clip and PMP maintain spectral constraints

By using this "Eq.(16)" we can get PAPR Bsd
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|
i - .. . T - - - '

Sparssy

] ,
D LS+elip FITRA far PMP '.
o =———mF i

|[—Pwp

- PARE)
i

CCDF(PAR)

>11dB PAR reduction | :

PAR [dB]

@ Fig 8.PAR and SNR performance comparisén

Fig (8) PAR and SNR Performance comparison for
different precoding methods. Sparse effectivelyuoed

PAR compare to fast iterative truncation

the
Fig(6)PAR performance for various precodin
schemes.PMP  relying on FITRA for PARgaIgorlthm(FITRA) and LS precoding methods.

performance(the curves of LS and MF overlap). Th
PAR for LS+clip is 4dB .Note that PMP effectively?' CONCLUSION
reduces the PAR compared to LS and MF precoding.

Fig 6. PAR performance for different schemes

In this project, we apply sparse representdtiased
on L1- minimization applied to FITRA algorithm
which is proposed in state-of —art methodologyh],
using sparse representation, we can reduce PARsalu
e s drastically. We compare our results with statesvf-a
e LStelip criteria like FITRA using I-infinity minimizationand
| == MF we prove that our methodology will give better déesu
| =E=PMP | based on PAR values which we obtained. Essentially,
: the MU MIMO_OFDM downlink channel matrix has a
high-dimensional null-space, which enables us gigie
transmit signals with “hardware-friendly” propedje
like low PAR. In general, PMP yields per-antenna
constant-envelope OFDM signals in the large-antenna
limit, i.e., for N— %,

average SER
S,

it LT Further development for this is combining PM

iR with other PAPR reduction techniques and also wiffe

i precoding techniques. In addition , a detailed \aisilof
\g the impact of imperfect channel state informatid®i)C
4 § on the performance of PMP is left for future work.
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